
3

Lean Middleware
David A. Maluf David G. Bell Naveen Ashish

MS 269/3, Moffett Field CA 94035 MS 26913, Moffett Field CA 94035

David.A. Maluf @nasa.qov Dbell@email.arc.nasa.qov Ashish@email.arc.nasa.qov

NASA Ames Research Center USRA RlACS USRA RIACS
MS 269/3 NASA Ames Research Center NASA Ames Research Center

Moffett Field, CA 94035
(001)-650-604-0611 (001)-650-604-500 (001)-650-604-2822

ABSTRACT
This paper describes an approach to achieving data integration
across multiple sources in an enterprise, in a manner that is cost
efficient and economically scalable. We present an approach that
does not rely on major investment in structured, heavy-weight
database systems for data storage or heavy-weight middleware
responsible for integrated access. The approach is centered around
pushing any required data structure and semantics functionality
(schema) to application clients, as well as pushing integration
specification and functionality to clients where integration can be
performed “on-the-fly”.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data integration, middleware,
integrated access, economically scalable, - new integration
paradigm

General Terms
Algorithms, Management, Design, Economics

integration systems in the NASA enterprise has led us to an
approach to data integration that is cost-effective, economically
scalable, and flexible. The experience of building data integration
systems and applications for a variety of NASA problems ranging
from aviation information systems to program management
system to NASA enterprise wide business anzlysis too!s, te!ls LIS

that the needs of different data integration applications are often
very diverse. Applications might require data integration across
anywhere from a handful of information sources to literally
hundreds of sources. The data in any source could range from a
few tables that could well be stored in a spreadsheet to something
that requires a sophisticated DBMS for storage and management.
The data could be structured, semi-structured, or unstructured.
Also, the query processing requirements for any application could
vary from requiring just basic keyword search capabilities across
the different sources to sophisticated structured query processing
across the integrated collection.

I I

I i............ Cost d i n g vision 1
Keywords
Middleware, Data Integration, XML, Economical

1 INTRODUCTION
Seamless integrated access to multiple, distributed, and
heterogeneous information sources has been and continues to be a
challenge for large organizations and enterprises. Data integration
systems and integration middleware [3] that address this problem
have been around for several years. The current middleware
technology however, requires significant investment in ‘heavy-
weight’ middieware for an application of any scale or
requirements. For each integration application we need to define
schemas or views for each source, and reconcile the schemas or
form integrated global schemas or views to facilitate the
integration. This approach, unfortunately, causes the IT cost for
integration applications to increase linearly with the application
size as shown in Fig 1. Our experience with building data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission andor a fee.
ACMSIGMOD ’05, June 14-16,2005. Baltimore, MD, USA.
Copyright 2004 ACM 1-581 13-000-0/00/0004.. .$5.00.

L I

of consumers

Fig 1. Costs of data integration

In this paper we present an approach to data integration that is
cost-effective and scalable. The approach is based on key insights
(outlined in the following section) that permit an integration
approach that is more flexible and adaptable to different
integration applications. The vast majority of integration
applications at NASA have been built over data in documents,
spreadsheets, reports and presentations as input Also, the query

processing (and result composition) requirements have largely or
completely been focused on extracting particular sections from
documents composing new documents with sections from other
multiple documents, or doing keyword based searches on
documents. Our approach has thus been to develop a data
management and integration system optimized for the above
capabilities and avoiding investing in functionalities that are
unnecessary for the common applications.

The following sections contain a description of this approach. The
data storage approach is first described followed by a description
of the system architecture. This is followed by a description of the
query processing capabilities. Some integration applications built
using this system are then described, concluding with a discussion
on the relationship with other integration approaches.

2 A COST-EFFECTIVE and SCALABALE
INTEGRATION APPROACH

The need for middleware and integration technology is inevitable,
more so with the shifting computing paradigms as noted in [ll].
The investment in schema management per new source integrated
and heavy-weight middleware are reasons why user costs
increases directly with the user benefit (as shown in Fig I.), with
the investment going to the middleware IT product and service
providers. What is beneficial to end users however are integration
technologies that truly demonstrate economies of scale as
envisioned in Fig 1.

How is a cost-effective and scalable integration approach
achieved ? Note first that the high IT cost of integration is often
due to completely unnecessary investment in formally structuring
information (with schemas) and using heavy-weight, “one-size-
fits-all” integration middleware for any integration application.
We begin by eliminating some tacit assumptions that seem to be
holding for data integration technology, namely:

Data must always be stored and managed in DBMS systems

Actually, requirements of applications vary greatly ranging
from data that can well be stored in spreadsheets, to data that
does indeed require DBMS storage.

The database must always provide for and manage the
structure and semantics of the data through f o r d sche&

Alternatively, the “database” can be nothing more than
intelligent storage. Data could be stored generically and
imposition of structure and semantics (schema) may be done
by clients as needed.

Managing multiple schemas from several independent
sources and interrelationships between them, i.e., “schema-
chaos ’’ is inevitable and unavoidable.

Alternatively, any imposition of schema can be done by the
clients, as and when needed by applications.

Clients are too light-weight to do any processing. Thus a
significant component of integration across sources must be,

We use the term ‘documents’ to include documents in formats
such as Word, PDF, HTML, XML or others, spreadsheets,
presentations in powerpoint, reports, etc., henceforth

in a sense, “pie-compiled” and loaded into a centralized
mediation component.

This assumption is based on a 1960s paradigm where c 1’ ients
had almost negligible computing power. Clients of today
have significant processing power and sophisticated
functionality can well be pushed to the client side.

As correctly noted in a recent Gartner research note [5] ,
knowledge workers will continue to introduce new technologies
and tools faster than enterprises can support them and the
challenge thus is to strike a balance between the consolidated
technologies that the enterprise can manage and support along
with giving the knowledge workers new tools and capabilities
they constantly crave for.

2.1 The NETMARK Data Storage and
Integration Approach

We now describe NETMARK, a system that was designed by
eliminating the above assumptions and based on the following
tenets:

The database will be nothing more than an intelligent storage
component that stores the data but does not impose a formal
structure or semantics is the form of schemas on the data. In
other words it is “schema-less”.

Any imposition of schema on the data will be done at the
client side,

Any required integration across multiple sources will be
done at the client and on the fly.

The following sub-sections contain a description of NETMARK.
We describe data storage in NETMARK followed by a
description of query capabilities and integrated access in
NETMARK. It is only possible to provide a brief overview of the
system and its functionality in this paper. The reader is referred to
[6] and [7] for recent and detailed technical descriptions of the
NETMARK system.

A high-level architectural overview of the NETMARK system is
provided in Fig 2. The ‘NETMARK Xh4L Store’ is the data
storage component of the system. We begin with a description of
data storage and management in the NETMARK XML Store as
this is central to other aspects such as query processing described
shortly after.

2.1 .I
NETMARK is designed to effectively store and manage
structured data as well as semi-structured data found in
documents, web-pages and spreadsheets. Structured data storage
and management database systems have been around for several
years, relational database systems (RDBMSs) for decades and
object-relational database systems (ORDBMSs) in the last
decade. For managing semi-structured data, we have seen a
significant amount of activity in building XML data management
systems in the last several years. The Xh4L data management
systems fall into two broad categories. One is based on an
approach of building an XML data management system over a
relational data management system [lo]. Any XML documents to

Data Storage and Management

V

.....
<Context>Abstract</Context>

<Content> This paper describes an ... </Content>

<Context>The NETMARK Data </Context>

<Content> We now describe NFTMARK .. </Content>

<Context> Data Stomge and Managernent</Context>

<Content>NFTMARK is designed to </Content>
A

I .

be stored are “shredded” into relational tables and stored as
relational data. The other approach, called the native XML
approach, is based on storing XML documents and structures in
underlying tree structures corresponding to the XML documents
[2]. Note that both approaches are “schema-centric” and “schema-
dependant” in that the structure of the data stored in the database
system depends on the structure of the XML document being
stored.

.t I

Fig 3. Netmark System Architecture

We will discuss query processing with context and content shortly
after, and continue with describing document storage. Each
document is converted to XML with context and content
information as illustrated above and then stored in the
NETMARK XML Store. In NETMARK we store the XML
documents as relational tables in an underling ORDBMS.
Approaches such as [lo] define different relations for different
XML element types. The NETMARK storage scheme however
uses the same relational tables to represent and store m y XML
document type. The NETMARK ‘SGML parser’ (Fig 3.)
decomposes the XML. (or even HTML) documents into its
constituent nodes and dynamically inserts them into two primary
database tables-namely, XML and DOC-within a NETMARK
generated schema. The descriptions of the XML and DOC tables
along with their respective relationships are listed in Fig 5. The
SGML parser is governed by five different node data types, which
are specified in the HTML or XML configuration files passed by
the daemon. The five NETMARK node data types and their
corresponding node type identifier as designated in the
NODETYPE column of the XML table are as follows: (1)
ELEMENT, (2) TEXT, (3) CONTEXT, (4) INTENSE, and (5)
SIMULATION *. These tables are stored in an underling Oracle
ORDBMS.

Object-relational mapping from XML to relational database
schema models the data within the XML documents as a tree of
objects that are specific to the data in the document [14]. In this
model, element type with attributes, content, or complex element
types are generally modeled as classes. Element types with parsed
character data (PCDATA) and attributes are modeled as scalar
types. This model is then mapped to the relational database using
traditional object-relational mapping techniques or via SQL3
object views. Therefore, classes are mapped to tables, scalar types
are mapped to columns, and object-valued properties are mapped
to key pairs (both primary and foreign). This mapping model is
limited since the object tree structure is different for each set of
XML documents. On the other hand, the NETMARK SGML
parser mode!s the dociment itse!f (similrt. to the DOM), and its
object tree structure is the s u m for all XML documents. Thus,
NETMARK is designed to be independent of any particular XML
document schemas and is termed to be “schema-less”.

FILE-NAME

FI LE-DATE
FILE-SIZE PARENTROWID

PARENTNODEID

NODETYPE
NO DENAM E
NODEDATA

SIBLINGID
DOC-ID (FK)

NODEID (PK)

Fig 5. NETMARK Generated Schema

~~

We skip the details on what the different node types are

J

Note that we have now provided a means to generically store any
XML or HTML document without requiring a new schema for a
new document (type). We have also captured the context and
content information in each document. We must also mention that
we have exploited the feature of physical row-ids in Oracle for
very fast traversal between nodes that are related.

2. I .2 NETMARK System
We outlined the NETMARK system architecture and process flow
in Fig 3. above. Users insert new documents (in any format such
as Word, PDF, HTML, XML or others) into NETMARK by
simply dragging the documents into a (NETMARK) desktop
folder. The ‘NETMARK DAEMON’ periodically picks up these
documents passes them onto the ‘SGML Parser’, which converts
the documents into XML. The XML documents are then stored in
the ‘NETMARK XML Store’ in a schema-less manner, as
described above. Communication between the user folders and the
NETMARK server is done using Web DAV [121 which is a set of
extensions to the HTTP protocol which allows users to
collaboratively edit and manage files on remote web servers.

Clients and applications can access and query data through the
‘NETMARK Extensible APIs’ using a variety of protocols based
on J2EE, RMI, and ODBC. Users can access NETMARK
documents by simple HTTP requests, in fact HTTP provides an
extremely simple yet powerful mechanism for users and clients to
access NETMARK

2. I .3 Querying Data in NETMARK
We now look at data querying capabilities in NETMARK,
centered around the notions of context and content. A key
capability is that of context search. A context search query, such
as C o n t e x t = I n t r o d u c t i o n will return the content portion
in the ‘Introduction’ secticns (the text in the Introduction section)
in all the documents in a document collection. NETMARK also
provides for result composition and formatting where we can use
XSLT [15] to specify the format of the query results before
presenting to the user. For instance we could specify a context
search for “Technology Gap” and specify that the integrated
results be presented in a new document. This is illustrated in Fig
6. Users can also specifying content seaTches which are
essentially keyword searches that return all documents containing
the specified search terms. For instance, a content query such as
C o n t e n t = S h u t t l e will return all documents that contain the
term ‘Shuttle’ anywhere in the document. One can also combine
context and content searches, for instance a query such as
C o n t e x t = T e c h n o l o g y G a p & C o n t e n t = S h r i n k i n g
returns the “Technology Gap” contexts (sections) of all
documents where the term ‘Shrinking’ occurs within the
Technology Gap context (section).

This is not the precise query syntax and we do not think it
essential to use the formal and precise Netmark query syntax
here

I I
Information Stores

in Netmark

Fig 6. Context Search

The Netmark query language is a language called XDB Query [7].
XBD Query allows for posing the context and content kinds of
queries over XML documents, as illustrated above. We will not
go into the query syntax details here but the key features are that
context and content search specifications are appended to a URL
that is sent to NETMARK. In thus URL we may also specify an
XSLT stylesheet which specifies how the results are to be
formatted and composed into a new document. Fig 7. provides an
illustration of using XDB Query to query the data in NETMARK
and then using XSLT to format the results. XSLT transformation
is done using the Xalan XSLT processor [131.

L - e n m 1

Fig 7. XDB Query search and transformation process

2. I .4
Note that any context query essentially maps to the (implicit)
schema for a document or set of documents. The keyword-based
context and content search is performed by first querying the text
index for the search key. Each node returned from the index
search is then processed based on its designated unique ROWID.
The processing of the node involves traversing up the tree
structure via its parent or sibling node until the first context is

Processing Queries Internally

found. The context is identified via its corresponding Integration can be specified (and executed) at the client side
NODETYPE. The context refers to here as a heading for a by specifying databanks. Thus integration can be done on-
subsection within a HTML or XML document, similar to the the-fly.

Application Assembly Time

1 hour

1 day

d I 1 > and <H2> header tags commonly found within HTML
pages. Thus, the context and content search returns a subsection
of the document where the keyword being searched for occurs.

Middleware requirements are reduced to needing just a thin
router capability across the various information sources.

NASA Application
Prouosal Financial
Management

Risk Assessment

Integrated Budget Performance
Document

Once a particular CONTEXT is found, traiersing back down the
tree structure via the sibling node retrieves the corresponding
content text. The search result is then rendered and displayed
appropriately. required.

The approach is highly scalable and flexible in that we can
take arbitrary numbers of sources and compose applications
that access one or more sources amongst these as and when

1 week

2.1.5 Accessing Multiple Data Sources
In the above sections we have elaborated on query processing
over data in the NETMARL XML Store. NETMARK can also
provide integrated query access to multiple information sources
that may be distributed at other locations. This is done through a
simple declarative process where an administrator creates a
‘Databank’ for an application. The databank specifies what
sources are to be queried when a user fires a query to that
application (databank). A source that is queried need not
necessarily have XML or even Context+Content searching
capabilities. However NETMARK ‘augments’ the query
capability in that it uses whatever query and search capabilities
are available at the source and then does further processing
required. For instance a source we integrated in one of the NASA
applications is the NASA Lessons Learned Information Server4.
A look at the search interface shows that this source allows only
“Content search” kinds of queries. For a query such as
Context=Title&Content=Engine, NETMARK will pass
on to the original source whatever portions of the query it can
process (in this example the original source can at least process

Anomalv Tracking

Applications

/

/’ .-.
- .. ,/

7 --- Routers

~ , -)\,

Data Sources

Fig 8. Highly scalable and flexible integration

the content portion of the query which is retrieving documents
that contain the word ‘Engine’). Further processing is then done 3 NASA APPLICATION EXAMPLES
in NETMARK where NETMARK then extracts the ‘Title’ NETMARK has proven to be a highly flexible, nimble, and easy
sections from only those documents that contain the word to assemble application framework for several integration
‘Engme’ in the ‘Title‘ section, from amongst the initiai results appiications that We have biiik using this fiancvvoik at NASA.
returned by the original server. All this is of course abstracted Table 1 contains a list of these applications along with the time
from the end user. For each data source that is accessed, an that was taken to assemble them with NETMARK.
administrator will have to look at the query capabilities of that
source and engineer what query processing can be used from the
source and what must further be augmented by Netmark. Also an
arbitrary number of sources may be specified in any Databank
and any query to that Databank (application) will ultimately go to
all the sources specified.

Having outlined the key features and functionality of NETMARK
we summarize the distinguishing characteristics of this system
and approach

We are able to provide sophisticated query facilities, such as
Context+Content search or even full-fledged XML querying,
over any information repository (that may otherwise have
limited or no query capabilities) with NETMARK.

We can access multiple distributed information sources
simultaneously.

httu://llis.nasa. govl

Table 1. NASA integration applications

We cannot describe all the above mentioned applications here, but
all of them are centered around having to extract and integrate
data from several heterogeneous and distributed documents to
form either an integrated information system or an integrated
document or report. For instance, the Proposal Financial

Management application is an information system for tracking
proposal financial information for outgoing (NASA) proposals in
response to a call for proposals. This allows querying of
aggregated and statistical information about the proposals such as
proposal numbers by NASA division type, dollar amounts
requested etc. The application takes as input all the proposals
(typically in formats such as Word or PDF) that have been
submitted in response to a particular call. The Integrated Budget
Performance Document (IBPD) is an integrated budget document
which unifies previously disconnected budget documents. While
manual assembly of the IBPD can take several weeks,
NET’MAFX was used to extract and integrate information from
thousands of NASA task plans containing the required budget
information and compose an integrated IBPD document. Finally,
Anomaly Tracking is an application that allows integrated
querying of two NASA (web accessible) data sources that are
essentially anomaly tracking databases. The application facilitates
more sophisticated querying than provided by either original
source and also facilitates simultaneous querying of both sources.

Clearly NETMARK has proven to be a scalable, fast, and flexible
integration framework for all of the above NASA integration
applications.

4 RELATED XML INTEGRATION
APPROACHES

At this point we expect that a reader familiar with data integration
systems is curious about a more accurate description of the
‘integration glue’ that NETMARK provides across various
sources being integrated. The approach in other prominent XML
mediation systems such as MIX [8] and Tukwila [4] (and
industrial systems such as Enosys [9] and Nimble [I] based on
these systems) follows from the Global-as-View (GAV) approach
in previously developed mediation systems. Each information
source is viewed as exporting an XML view (called a source
view) of the data it contains. An integrated (global) view of the
data is formed by defining an integrated view of the d& over the
individual data source views. This integrated view definition is
done using XML query languages such as XQueryRpath [141. In
NETMARK, from a multiple source integration perspective, the
focus has been on providing the capability to query multiple
sources simultaneously. So for instance a Context query for
“Budget” will pull out the ‘Budget’ sections from all documents
in all sources for an application. If the Budget section happens to
be referred to as ‘Cost Details’ in another source then, strictly
speaking, in NETMARK we have to specify two Context queries
(one for ‘Budget’ and one for ‘Cost Details’). We do not have the
luxury of defining a virtual “Budget” view and specifying a
mapping that says that ‘Cost Details’ maps directly to ‘Budget’,
as can be done in MIX and Tukwila systems. Indeed, virtual

113 Draper, D., Halevy, A.Y. and Weld:, D.S., The
Nimble XML Data Integration System. ICDE, 2001,
pp. 155-160.
H.V.Jagadish, Khalifa, S., Chapman, A., Lakshmanan,
L., Nierman, A., Paparizos, S., Patel, J., Srivastava,
D., Wiwatwattanna, N., Wu, Y. and Yu, C., TIMBER:
A Native XML Database, VLDB Journal, 11 (2002)
274-291.
Halevy, A., Data Integration: A Status Report (Invited
Talk). G e r m Database Conference (BnV), 2003.

[2]

P I

views can be more complicated. For instance we may want a
virtual view called “Top Employees of NASA, which is a view
across three information sources at three different NASA centers.
Top Employees could be defined as say employees at NASA Ames
with a performance rating of excellent, personnel at NASA
Johnson with a performance score of 2 or better, and employees
of NASA Kennedy with a rating ofvery good or better. Mediation
frameworks such as [8] provide for defining such virtual views
and then simply querying the Top Employees (virtual) view. In
NETMARK we will end up asking three different queries
(corresponding to the different NASA centers) which will go to
the different information sources. Note however that the approach
in [8] and [l] absolutely requires us to formally define schemas
(source views) for the three information sources, define a virtual
“Top Employees” view and specify the relationships between the
virtual and source views. The NETMARK approach forces no
such requirements. NETMARK will look at the source data
(typically employee performance documents or spreadsheets) and
automatically structure documents from each source, which users
can then query. Our experience (and claim) is that the flexibility
of not having to specify schemas and relationships between
schemas, greatly outweighs any extra work that may need to be
done in cases where having a virtual view would be useful.

Also, particular attention has been paid to automated metadata
extraction from the data. The bulk of enterprise data resides in
documents (in formats such as word, PDF or html), in
spreadsheets and presentations. We have developed parsers for a
wide variety of document formats (such as Word, PDF, HTML,
Powerpoint and others) that automatically structure and “upmark”
a document into Xh4L based on the formatting information in the
document. Our experience shows that such automatic parses are
extremely successful in parsing and structuring most enterprise
documents quite accurately.

5 CONCLUSIONS
We have presented an integration framework that is cost effective
and economically scalable. This has been achieved by ensuring
that formal schema imposition on any data is there only to the
extent that it needs to be (if at all). All integration functionality is
pushed to the client. No mandatory heavy-weight integration
middleware is required, rather the desired integration capabilities
can be specified on the application side and on-the fly. The
integration framework has been very successfully used to develop
several NASA enterprise applications in a very cost-effective
manner and within short time-frames.

6 REFERENCES

[41 Ives, Z., Halevy, A. and Weld, D., An Xh4L query
engine for network-bound data, VLDB Journal, 11

Knox, R., Grey, M., B.Burton, W.Andrews, G.Phifer,
T, A., T.Eid, K.Hanis, T.Bell, J.Lundy, W.Arevolo,
D.M.Smith, D.Logan and L.Latharn, Research Note:
Predicts 2005: Support Improves for Knowledge
Workers. Gartner, 2004.
Maluf, D. and Tran, P., NETMARK: A Schema-Less
Extension for Relational Databases for Managing

(2002) 380-402.
[5]

[6]

Semi-structured Data Dynamically. ISMIS, 2003, pp.

Maluf, D., Tran, P. and La, T., “An Extensible
‘Schema-less’ Database Framework for Managing
High-Throughput Semi-structured Documents.
IASTED, Applied Infomtics, 2003.
Mukhopadhay, P. and Papakonstantinou, Y., Mixing
Querying and Navigation in MIX. ICDE, 2002.
Papakonstantinou, Y. and Vassalos, V., Architecture
and Implementation of an XQuery-based Information
Integration Platform, Data Engineering Bulletin

23 1-241.
[7]

[SI

[91

(2002).

[lo] Shanmugasundaram, J., Shekita, E., Kiernan, J.,
Krishnamurthy, R., Viglas, S. , Naughton, J. and
Tatarinov, I., A General Technique for Querying
XML Documents using a Relational Database System,
SIGMOD Record, 30 (2001) 20-26.
Stonebraker, M., Too Much Middleware, ACM
SIGMOD Record, 3 1 (2002) 97- 106.
Whitehead, J. and Goland, Y., WebDAV: A network
protocol for remote collaborative authoring on the
Web. CSCW, 1999.

[l l]

[12]

[131 Xalan, httu://xml.auache.ordxalan-i/.
[141 XQuery, httu://www.w3.orglTRlx~uerv/.
[15] XSLT, http://www.w3.orgiTRxslt.

